Neutron Diffraction Study of Hydrogen Bonding and Thermal Motion in Deuterated α and β Oxalic Acid Dihydrate*

By P. Coppens[†] and T. M. Sabine[‡]

Chemistry and Physics Departments, Brookhaven National Laboratory, Upton, New York 11973, U.S.A.

(Received 24 January 1969)

A three-dimensional neutron diffraction study of the α and β modifications of deuterated oxalic acid dihydrate has been made. The two structures are compared with particular reference to the D–O–D angles in the water molecules, which are respectively $105.8 \pm 0.2^{\circ}$ and $108.8 \pm 0.2^{\circ}$ in the α and β forms. It is concluded that the electronic structure of the water molecule is dependent on the hydrogen bonding environment. Rigid-body motion analysis of the oxalic acid molecules shows a larger vibration around the long molecular axis and excess vibration of the hydroxylic deuteron in the direction of the short hydrogen bond. The excess root mean square amplitude is in quantitative agreement with earlier infrared data. A discussion of the deuterium scattering length is given, and it is shown that this quantity cannot be less than 6.51 ± 0.02 fermi.

Introduction

It has been supposed for some years that crystals of deuterated oxalic acid dihydrate are not isomorphous with crystals of the hydrated material (Fukushima, Iwasaki & Saito, 1964; Fukushima, Iwasaki, Saito, Sato & Hoshino, 1965; Iwasaki & Saito, 1967). However, Delaplane & Ibers (1969) found that the crystal structure did not change on deuteration, except for small changes in bond lengths and angles.

The present work was undertaken to determine the deuterium atom position in deuterated α -oxalic acid dihydrate (α -DOX) to complement the X-ray work of Delaplane & Ibers, and to use the atomic and thermal coordinates in a re-analysis of the X-ray data to determine the asphericity of the distribution of bonding electrons (Coppens, Sabine, Delaplane & Ibers, 1969). The structure of β -deuterooxalic acid dihydrate(β -DOX) has been examined with neutrons by Iwasaki & Saito (1967), whose work came to our attention while these measurements were in progress, but as they had measured the integrated intensity of only 90 reflections in the hol and hk0 reciprocal lattice planes, it was decided to complete the experiment. Our measurements of lattice parameters agreed with those of Fukushima, Iwasaki & Saito (1964). When the more accurate X-ray lattice parameters of Iwasaki & Saito (1967) became available they were used in the data analysis.

Experimental

Crystal growth

The crystals were grown by repeated recrystallization of anhydrous oxalic acid in D_2O under a nitrogen at-

mosphere. Large crystals grew readily. The α and β forms appear to grow at random. Initially Dr B.M. Craven at the Crystallographic Laboratory of the University of Pittsburgh attempted to grow the α form. The first crystal from the solution was α and the second β . That α crystal was lost and subsequently only the β form would grow at Pittsburgh.

We repeated Craven's experiments at Brookhaven and obtained only the α form. No attempt was made to examine this effect further.

The crystals finally used had volumes of 3·3 and 4·0 mm³ for α -DOX and β -DOX respectively.

The unit-cell constants are as follows:

α-	$(COOD)_2$.	.2D ₂ O* β-	$(COOD)_2.2D_2O^{\dagger}$
SI	bace group	$P2_1/n$ (Z=2) Space	the group $P2_1/a$ (Z=2)
a	6.150 Å	a	10·021 Å
b	3.605	b	5.052
С	12.102	С	5.148
β	106·63°	β	99·27°
p	100.03	μ	15 41

*from Delaplane & Ibers (1969) †from Iwasaki & Saito (1967)

Data collection

The data for both crystals were collected at the Brookhaven High Flux Beam Reactor. The neutron intensity at the specimen was 1.5×10^6 n cm⁻² sec⁻¹ at a wavelength of 1.07 Å. Second-order contamination was avoided by using a Ge(331) monochromator. The α -DOX crystal was mounted with **b** along the φ axis of a four-circle diffractometer while the **c*** axis of the β -DOX crystal lay along the φ axis. On rotation of the crystals about the φ axis at $\chi = 90^{\circ}$ no multiple scattering effects (Coppens, 1968) were observed.

Under computer control (Bednowitz, Coppens & Hamilton, 1966) the integrated intensities of a total of 627 independent reflections from the α crystal (sin θ/λ < 0.65 Å⁻¹) and 682 from the β crystal (sin θ/λ < 0.70 Å⁻¹) were measured.

^{*} Work supported by the U.S. Atomic Energy Commission.

[†] Present address: Chemistry Department, State University of New York at Buffalo, Buffalo, New York 14214, U.S.A.

[‡] Visiting Scientist from the Australian A.E.C.

Structure refinement

An absorption correction using an absorption coefficient of 0.13 cm^{-1} computed from the true absorption cross sections and the incoherent scattering cross sec-

tions of the atomic species present, was applied to the α -DOX data. Since the maximum difference between the corrections applied to different reflections was 0.3%, no absorption correction was made for β -DOX.

Table 1. Observed and calculated structure factors for α -DOX (×100)

Negative F_{obs} indicates an unobserved reflection. Column labelled EXT lists 100. y, where y is the extinction correction to the intensity: $I_{obs} = I_{calc}$. y. The entry is deleted for y > 0.99. F_{obs} has been divided by $y^{1/2}$.

_

	Table 1 (cont.)																		
0 17 0 13 1-14 1-17 1-10 1-19 1 -8 1 -7 1 -5	21 55 64 157 157 147 63 219	212 450 150 158 154 156 205	99 99 92 98 99 83 87	*4 4 1 1 1 1 1 1 1 1 	212 80 288 288 280 280 280 29 219 219 219 219 243	214 79 220 290 141 240 78 246 30 219 157 243	85 97 87 97 80 97 89 79 89 1 82	6 -4 6 -3 6 -2 6 -1 6 -1 6 -2 6 -1 6 -2 6 -3 6 -2 6 -3 6 -2 7 -7 7 -6 7 -5	28 126 60 -24 62 79 -49 144 75 174 55 80	33 127 50 15 71 70 22 146 66 166 166	99 98 98 98 93 98 93 99 98	2-12 2-11 2-10 2 - R 2 - 7 2 - 5 2 - 7 2 - 5 2 - 3 2 - 2 2 - 1	37 119 60 -38 22 49 177 65 205 229 103 178	46 110 68 30 46 171 58 215 211 38 194	77 96 99 89 89 83 83 99 83	5 0 5 1 5 7 5 -5 6 -4 6 -7 6 -1 -	37 -48 39 -34 113 -24 -45 -27 K= 4	56 29 16 91 40 110 2 45 16	77 77 79 99 96
1 -4 1 -3 1 -2 1 -1 1 0 1 1 1 2	296 94 115 720 44 747 705	310 101 118 214 39 243 202	67 94 91 76 99 74 81	3 6 3 7 3 8 3 9 4-13 4-12 4-12	41 26 117 73 -24 45 261	36 13 121 63 41 254 *	99 95 99 85	7 -4 7 -3 7 -2 7 -1	122 -24 116 71 (= 3	124 14 113 63	95 96 99	2 1 2 3 4 5 4 7	111 210 25 54 287 105 119	75 181 27 57 267 104 125	97 87 99 76 96 94	H L 0 -7 0 -6 0 -5 0 -3 0 -2	FOBS 72 55 181 81 -37 -191	FCALC 79 39 183 72 1 33	E X T 98 99 89 98
1 4 1 4 1 6 1 7 1 8 1 9 1 10	88 139 111 117 241 97 -30 87	84 144 110 116 246 97 3 92	96 90 94 81 96 97	4 - 10 4 - 9 4 - 7 4 - 6 4 - 5 4 - 4 4 - 3	93 280 217 358 199 109	91 280 220 357 196 108 137	97 80 86 71 88 96 93	H L 0-11 0-10 0 -8 0 -7 0 -6 0 -5	FOR5 47 -155 61 64 123 -28 -33	FCALC 54 23 56 68 122 12 36	EXT 99 99 92 92 94	2 R 2 Q 3 - R 3 - 7 3 - 6 3 - 5 3 - 4	81 -32 154 237 256 48 55	66 42 154 237 259 56 52	98 92 84 81 99 99	0 1 2 3 4 5 6	39 53 -30 -129 -24 74 197 80	54 84 54 33 1 72 183 39	99 97 99 98 90 99
1 -11 2-14 2-17 2-17 2-11 2-10 2 -9	240 79 55 225 142 34 130	245 82 55 218 138 34 135	84 99 87 94 93	4 -2 4 -1 4 C 4 1 4 2 4 3 4 4	72 249 32 -43 95 -46 300	77 260 36 20 101 1 310	98 80 99 96 75	0 -4 0 -3 0 -2 0 -1 0 1 0 2 0 3	157 133 -30 155 153 -38 132	130 142 3 157 157 3 142	93 91 89 90 92	3 -3 3 -2 3 -1 3 C 3 1 3 2 3 3	157 -31 295 36 54 47 -43	156 265 27 56 47 13	91 74 99 99	$\begin{array}{c} 0 & 7 \\ 1 & -8 \\ 1 & -7 \\ 1 & -6 \\ 1 & -4 \\ 1 & -3 \\ 1 & -2 \end{array}$	82 -63 96 70 101 113 91	79 2 100 59 97 109 92	98 96 99 96 95 96
2 -8 2 -7 2 -6 2 -5 2 -4 2 -3 2 -2 2 -1	76 228 170 105 88 337 340	80 226 170 111 85 33 336 338	97 88 96 96 95 64	4 6 4 7 4 0 5-17 5-11 5-10	104 71 73 40 -26 45 146	191 72 76 74 40 7 55	98 98 98 98 98 98 98 98 98 98 98	0 0 0 0 0 0 0 0 0 0 0 0 0 0	136 62 -20 121 70 53 21 55	130 36 12 122 68 56 23 54	93 99 98 99 99	3 5 3 6 3 7 3 8 4-11 4-10 4 -0	90 66 103 36 35 166 53	90 69 115 50 34 160 7	97 98 95 99	2 - 8 2 - 7 2 - 6 2 - 5 2 - 4 2 - 3 2 - 2 2 - 2 2 - 1	-55 148 164 158 -31 -41 61 97	22 150 116 156 13 37 63	92 95 91 99 98
2 1 2 2 2 3 2 4 5 6	384 200 130 405 183 113	373 47 197 133 401 184 119	61 99 83 92 62 87 94	5 -9 5 -3 5 -7 5 -6 5 -4 5 -3	154 163 133 145 62 20 134	150 162 129 141 57 22 143	94 93 95 74 70 93	1 - 9 1 - 9 1 - 7 1 - 6 1 - 5 1 - 4 1 - 3	159 28 179 76 157 127 108	155 28 184 77 163 114 105	92 88 97 89 94 95	4 - R 4 - 7 4 - 6 4 - 5 4 - 4 4 - 3 4 - 2	140 -34 -8 -29 179 71	145 35 04 37 28 182 66	93 97 99 89 95	2 0 2 1 2 2 2 3 2 4 2 5 3 -7	-27 -40 -49 -41 88 102 -41	20 40 22 64 44 108 6	99 98 99 96
2 7 2 8 2 9 2 10 2 11 3-14 3-13 3-12	236 85 221 131 32 36 21	41 235 82 214 131 40 38	99 83 98 97 95	5 -2 5 -1 5 0 5 2 5 4 6-10	106 74 265 192 62 122 -23 164	106 66 258 175 55 124 23 159	96 98 82 20 95 95	1 -7 1 -1 1 0 1 1 1 2 1 3 1 4	60 -27 109 -33 117 144 132	68 15 113 10 121 106 138 250	94 94 95 92	4 -1 4 -1 4 -1 4 -1 4 -1 4 -1 4 -1 4 -1	-21 309 105 93 96 79 101 72	28 298 86 99 101 88 103	76 97 96 97 96	3 -6 3 -5 3 -4 3 -3 4 -4 4 -3 4 -2	63 53 96 51 87 86 31	66 32 94 88 90 44	98 96 97 97 97
3-11 3-10 3 -9 3 -8	283 55 101 222 226	281 44 102 221 215	81 99 96 85 85	6 -7 6 -6 6 -5	-33 76 72 60 106	22 71 76 60 135	99 98 99 95	1 6 1 7 1 8 1 0 1 10	32 67 83 81 165	250 24 76 84 80 162	98 97 98 97	5 - 5 5 - 4 5 - 7 5 - 2 5 - 1)75 -35 122 86 64	73 174 23 123 79 83	91 95 98 98		122	135	43

A least-squares analysis based on F was made with the Brookhaven version of the program ORFLS (Busing, Martin & Levy, 1962). Initial parameters for α -DOX were the parameters found by Sabine, Cox & Craven (1969) for the protonated material, while for β -DOX the final parameters of Iwasaki, Iwasaki & Saito (1967) were used. The carbon and oxygen scattering lengths were fixed at 6.61 f* and 5.77 f respectively (International Tables for X-ray Crystallography, 1962). An overall scale factor, atomic positional parameters and anisotropic thermal parameters for each atom, and the deuterium scattering length were varied. Standard deviations were allotted to the measured intensity of the *j*th reflection P_i through the expression $\sigma^2(P_j) = \sigma_1^2(P_j) + \sigma_2^2(P_j)$ where $\sigma_1(P_j)$ is the standard deviation due to counting statistics alone and $\sigma_2(P_i) =$ $0.03 P_{i}$. The value 0.03 was chosen from experience with other investigations on this diffractometer and comparison of symmetry-related reflections in these crystals.

A reflection was considered unobserved for $P < 1.5\sigma(P)$. For such reflections a term $\Delta F = 1.5\sigma(F_o) - |F_c|$ was included in the refinement whenever $F_c > 1.5\sigma(F_o)$.

Extinction treatment

Initially the strong, severely extinction-affected reflections were excluded from the refinement; this proce-

* 1 fermi = 10^{-13} cm.

dure is unsatisfactory when extinction is strong, however, because extinction effects in the large group of intermediate reflections will cause systematic shifts in the temperature parameters.

It is preferable to refine an extinction coefficient as a least-squares parameter (Larson, 1967). In our case, such refinement showed that extinction was anisotropic as in the crystals used for the X-ray analysis (Delaplane & Ibers, 1969). To deal with this anisotropy a method was developed in which extinction is dependent on six rather than on one parameter. Full details of this procedure are given in a separate publication (Coppens & Hamilton, 1969). For Type I crystals, in which extinction is mosaic-spread dominated, the mosaic spread is described by a three-dimensional Gaussian distribution. In Type II crystals extinction is governed by the particle size (Zachariasen, 1967). In the anisotropic treatment the particles are assumed to be ellipsoidal in shape. Thus, mosaic spread or particle size are described by the six independent elements of a symmetrical tensor G_{ij} . These six elements are the extinction parameters in the least-squares refinement.

The refinement confirmed that extinction is severe, the intensities of the most affected reflections being reduced by extinction to 21 and 20% for α -DOX and β -DOX respectively. The effect is generally much less for the other reflections but still significant in the intermediate intensity range. (See the list of observed and calculated structure factors in Tables 1 and 2.) The resulting change in the positional parameters is small, and always less than 1.5 times the combined standard deviations. As anticipated, temperature parameters change significantly: the average increase in the diagonal tensor elements is about 7%. Clearly it is essential to correct for severe extinction if systematic errors in the temperature parameters are to be avoided.

Final extinction, positional and thermal parameters are given in Tables 3, 4 and 5.

Final R factors are as follows: α -DOX β -DOX

$$R = \frac{\Sigma |F_o - |F_c||}{\Sigma F_o} \qquad 0.043(0.062) \qquad 0.038(0.058)$$

$$R_w = \left\{ \frac{\Sigma_w |F_o|^2}{\Sigma_w F_o^2} \right\}^{\frac{1}{2}} 0.044(0.055) \qquad 0.038(0.062)$$

The numbers in parenthesis refer to final R factors before the extinction refinement. The R factors after ex-

Table 2.	Observed	and	calculates	structure	factors	for	β-DOX	(×	100)
100.0 2.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				J		J	· ·	,

Details as in Table 1.

Ke 0 FALL FAL	943 11-2 13 13 13 13 13 13 13 13 13 13 13 13 13	300 60 64 64 1-1-2-3 5 64 7-1-0-1-2-3 5 64 7-1-0-1-2-3 5 64 7-1-0-1-2-3 5 64 7-1-0-1-2-3 <	510 510 443 441 443 441 443 441 443 441 443 441 443 441 443 441 443 441 443 441 443 441 443 441 443 441 443 441 443 441 443 441 443 441 444 441 444 441 444 441 444 441 444 441 444 441 444 441 444 441 444 441 444 441 444 441 444 441 444 441 444 441 444 441 444 441 444		238 92 5 FC4L53 50 90 5 FC4L53 90 90 1010 90 90 90 1010 90 90 90 1010 90 90 90 1010 90 90 90 1010 90 90 90 1010 90 90 90 1010 90 90 90 1010 90 90 90 11010 90 90 90 11010 90 90 90 11010 90 90 90 11010 90 90 90 11010 90 90 90 11010 90	67 1022 	67 98 7 57 8 2 7 75 8 2 98 2 99 8 90 2 91 140 92 11 93 12 94 12 95 16 96 12 97 96 98 2015 975 96 98 2015 975 96 98 97 98 97 98 97 98 97 98 97 98 97 98 97 98 97 98 98 99 98 99 98 99 98 99 98 99 98 99 98 99 <td< th=""><th>22 17 7 7 10 1 - 1 19 19 23 13 7 6 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 6 6 6 6</th><th>44 777877787777877777777777777777777777</th></td<>	22 17 7 7 10 1 - 1 19 19 23 13 7 6 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 6 6 6 6	44 777877787777877777777777777777777777
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H L FOBS 0 0 169 0 1 133 0 2 46 0 5 82 0 5 82 0 5 82 1 -6 119 1 -5 15 1 -4 215 1 -4 119 1 -5 15 1 -4 217 1 -1 104	FCALC EXT 10 1 171 75 10 3 171 75 10 3 171 75 10 3 171 75 10 3 171 85 96 11 -3 178 80 11 -1 -3 182 96 11 0 11 -1 19 11 1 1 1 -1 10 11 13 11 2 -1 -3 10 70 72 12 -2 -1 -3 10 77 78 12 -2 -1 -7 -7 12 -2	154 156 103 99 53 52 45 47 222 88 84 20 21 128 127 74 75 -12 13 13 32 67 66 111 118 58 61	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	101 84 122 93 26 58 99 101 95 126 92 42 99 89 96 160 89 16 126 93 42 99 13 12 99	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32 99 100 95 139 89 47 99 18 112 93 148 89 195 83 30 63 98 72 98 40 99 53 98 66 97 82 96		

	α-DOX	R	Rw	$g \text{ or } G_{ij}$ (10 ⁻⁴)	Corresponding mosaic spread (sec)	Corresponding particle size $(cm \times 10^{-4})$
	Isotropic	0.044	0.045	1.58 (6)	3.7	1.7
C	Type I	0.043	0.044			
G_{11}				3.08 (44)	3.3	
G ₃₃				5.26(19)	2.5	
G_{12}^{33}				-1.25(39)		
G_{13}				-1·07 (91)		
G_{23}				0.84 (46)		
	Type II	0.043	0.044			
G_{11}				0.61 (6)		1.4
G_{22}				0.19 (3)		2.5
G ₃₃				0.34 (4)		1.8
G_{12}				-0.10(5)		
G_{23}				0.00 (4)		
	Isotropic	0.040	0.039	1.93 (9)	3.0	2.1
	Type I	0.038	0.038			
G_{11}	r)po r	0 050	0 050	2.42 (53)	3.8	
G_{22}^{11}				4.82 (86)	2.7	
G_{33}				4.25 (43)	2.8	
G_{12}				1.12 (67)		
G ₁₃				-0.16(37)		
023				1.38 (42)		
~	Type II	0.038	0.039			
G_{11}				0.24 (4)		2.2
G ₂₂				0.19(3)		2.5
G13				0.32 (3) -0.07 (3)		1.8
G_{12}				-0.07(3)		
G_{23}				-0.05(3)		
-						

Table 3.* Extinction parameters for α - and β -DOX

* All tensor elements refer to the crystallographic axes a, b and c.

Table 4. Atomic parameters for α -DOX (×10³)

Positional parameters are given as fractions of the cell edges. Thermal parameters are in the form: exp $[-(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + 2\beta_{12}hk + 2\beta_{13}hl + 2\beta_{23}kl)]$.

	$x, \sigma(x)$	<i>y</i> , σ(<i>y</i>)	$z, \sigma(z)$	β_{11}	β22	β_{33}	β_{12}	β_{13}	β_{23}
C(1)	-447 (2)	551 (3)	509 (1)	163 (3)	501 (9)	36 (1)	44 (4)	23 (1)	-2(2)
O(1)	854 (2)	- 609 (4)	1484 (1)	223 (4)	915 (15)	34 (1)	143 (5)	21 ÌI	8 (2)
O(2)	-2183 (2)	2296 (4)	360 (1)	217 (4)	894 (15)	43 (Ì)	169 (5)	35 (1)	6 (2)
O(3)	- 4499 (2)	6139 (5)	1806 (1)	222 (4)	889 (15)	42 (1)	88 (6)	35 (2)	20 (3)
D(1)	259 (2)	79 (4)	2171 (1)	260 (4)	895 (16)	47 (l)	60 (5)	30 (1)	4 (2)
D(2)	- 5712 (2)	6849 (5)	1151 (1)	287 (5)	1026 (17)	55 (1)	92 (6)	24 (2)	-44(3)
D(3)	- 3591 (2)	4453 (5)	1522 (1)	294 (5)	1103 (19)	89 (Ì)	143 (7)	74 (2)	-15 (3)

Table 5. Atomic parameters for β -DOX (×10³)

Positional parameters are given as fractions of the lattice parameters. Thermal parameters are in the form: exp $[-(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + 2\beta_{12}hk + 2\beta_{13}hl + 2\beta_{23}kl)]$.

	x, $\sigma(x)$	$y, \sigma(y)$	z, $\sigma(z)$	β_{11}	β22	β ₃₃	β_{12}	β_{13}	β_{23}
C(1)	505 (1)	219 (2)	4045 (2)	58 (1)	241 (4)	291 (4)	4 (1)	48 (1)	35 (2)
O(1)	1463 (1)	-1518 (2)	4359 (2)	77 (1)	339 (6)	467 (5)	47 (2)	102 (2)	120 (4)
O(2)	377 (1)	1998 (3)	2470 (3)	79 (1)	339 (5)	375 (6)	31 (2)	85 (2)	117 (4)
O(3)	3278 (1)	-804(3)	1516 (3)	100 (2)	503 (7)	487 (7)	-88(3)	132 (3)	-219 (6)
D(1)	2148 (1)	-1196 (2)	3126 (2)	84 (1)	382 (6)	461 (6)	30 (2)	93 (3)	54 (4)
D(2)	3491 (1)	-1717 (3)	35 (3)	120 (2)	476 (7)	398 (6)	0 (2)	78 (2)	-121(4)
D(3)	3937 (1)	527 (3)	2002 (3)	96 (1)	411 (6)	480 (6)	-44(2)	70 (2)	- 72 (4)

tinction refinement include all reflections. The improvement is conspicuous.

Discussion

The crystal structures of α -POX and α -DOX are compared in the first paper of this series (Delaplane & Ibers, 1969).

The extinction parameters

The extinction parameters show significant anisotropy in the extinction (Table 3). The improvement in R on going from isotropic to anisotropic extinction refinement is small, though significant according to statistical tests (Hamilton, 1965). There is little difference between agreement factors obtained with Type I and Type II treatments. Both show that the anisotropy is less pronounced than in the specimen used for X-ray data collection, though the crystals used in the present study are more nearly perfect. Thus, particle size (Type II) varies between 1.4 and 3.9 μ here as against 0.3 – 1.2 μ in the smaller crystal of the X-ray study (Delaplane & Ibers, 1969).

The positional and temperature parameters are equal to within one standard deviation for the two treatments. It is therefore of no consequence for the structural analyses whether Type I or Type II is closer to reality. In fact, extinction is probably affected both by mosaic spread and by particle size and neither extreme is entirely correct in this case.

The oxalic acid molecules

Bond lengths and bond angles are given in Tables 6 and 7 together with the X-ray values of Delaplane & Ibers (1969) and the X-ray and neutron values of Iwasaki & Saito (1967), and Fukushima *et al.* (1965).

Intramolecular distances and angles in the oxalic acid molecule are remarkably similar in the two polymorphs (Fig. 1). As indicated by nonbonded H...O distances the short hydrogen bond is somewhat stronger and the long hydrogen bonds are somewhat weaker in α -DOX. There is a correlation between the six H...O bond lengths in the two structures and the corresponding O-H...O angles, the shorter bonds being associated with the larger angles. A similar observation has been made by Hamilton (1962) in a survey of several structures. The comparison of the X-ray and neutron parameters will be discussed in a subsequent article.

The water molecule

Iwasaki, Iwasaki & Saito (1967) discussed the difference between the water-molecule angles in α -POX and β -

Table 6. Bond lengths for α and β -DOX

The notation for symmetry related atoms is as in Fig.1 of this paper and Fig.1 of Delaplane & Ibers (1969).

	α-DO	X	β-DOX			
. .]	Delaplane & Ibers	Fukushima et al.			
Bond	This investigation	(1969)	This investigation	(1965)		
C(1)—C(1')	1.539 (2)	1.537 (2)	1.537 (2)	1.539 (5)		
C(1)O(1)	1.291 (2)	1.287(1)	1.291 (2)	1.300 (4)		
C(1)—O(2)	1.208 (2)	1.209 (1)	1.203 (2)	1.201 (4)		
O(1)D(1)	1.031 (2)	0.86 (2)	1.020 (2)	1.042 (8)		
O(3)—D(2)	0.954 (2)	0.83(2)	0.944 (2)	0·946 (10)		
O(3)—D(3)	0.954 (2)	0.78 (2)	0.947 (2)	0.960 (10)		
$D(1) \cdots O(3'')$	1.493 (2)	1.67 (2)	1.520 (2)	1.500 (8)		
$D(2) \cdots O(2''')$	1.939 (2)	2.05(2)	1.960 (2)	1.965 (9)		
$D(3) \cdots O(2^{IV})$	2.008 (2)	2.21 (2)	1.895 (2)	1.874 (10)		
$O(1) \cdots O(3'')$	2.524 (2)	2.531(1)	2.538 (2)	2.540 (4)		
$O(3) \cdots O(2^{\prime\prime\prime})$	2.879 (2)	2.880 (2)	2.855 (2)	2·854 (5)		
$O(3) \cdots O(2^{IV})$	2.906 (2)	2.907 (1)	2.834 (3)	2.822 (4)		

Table 7. Bond angles for α and β -DOX

	α-DC		β-L	UX
Bond	This investigation	Delaplane & Ibers (1969)	This investigation	Fukushima <i>et al.</i> (1965)
O(1) - C(1) - O(2)	126.6 (1)	126.8 (1)	126.1 (1)	126.2 (3)
O(1) - C(1) - C(1')	112.2 (1)	111.8 (1)	112.0 (1)	111.5 (3)
O(2) - C(1) - C(1')	$121 \cdot 2(1)$	121.4 (1)	121.9 (1)	122.3 (3)
C(1) - O(1) - D(1)	112.8 (1)	113.8 (8)	112·0 (1)	112.3 (5)
D(2) - O(3) - D(3)	105.8 (2)	101.2 (17)	108.8 (2)	110.5 (9)
$O(1) - D(1) \cdots O(3'')$	177.4 (1)	176.3 (15)	174.2 (2)	174.4 (6)
$D(1) \cdots O(3'') - D(2'')$	113.7 (1)	113.7 (10)	131.4 (2)	130.0 (7)
$D(1) \cdots O(3'') - D(3'')$	119.2 (1)	110.7 (7)	119.8 (2)	119.4 (7)
$O(3) - D(2) \cdots O(2''')$	167.7 (2)	172.0 (13)	157.3 (2)	155·8 (7)
D(2) - O(2''') - C(1''')	123.1 (1)	125.2 (4)	132.8 (1)	
$O(3) - D(3) - O(2^{iv})$	156.0 (2)	148.9 (20)	170.3 (1)	169.1 (8)
$D(3) \cdots O(2^{IV}) - C(1^{IV})$	129.6 (1)	131.0 (4)	$125 \cdot 1(1)$	- (-)

DOX. The present investigation shows that the differences are somewhat smaller than found previously but still highly significant. The values are: α -POX, $105 \cdot 9^{\circ} \pm$ 0.7° (Sabine *et al.*, 1969); α -DOX, $105 \cdot 8 \pm 0.2^{\circ}$, β -DOX, $108 \cdot 8 \pm 0.2^{\circ}$. Iwasaki, Iwasaki & Saito have attributed this difference to a change in hybridization of the water molecule initiated by the arrangements of the hydrogen bonds in the crystal. Our results confirm that the difference is not an isotope effect since the bond angles are equal in α -DOX and α -POX. The water molecule in α -DOX is of type K of the classification of Chidambaram, Sequeira & Sikka (1964), one of the lone-pair orbitals being directed towards an H-bond donor group while the other lone pair is not specifically directed to any neighboring group (Fig. 2). The water molecule in β -DOX, on the other hand, is of type F in which the bisector of the lone pairs is directed toward an H-bond donor group. It seems reasonable to assume that in this situation the angle between the lone pairs is decreased in order to increase the total interaction with the proton or deuteron of the donor group. In the orthogonal atomic-hybrid approximation (Coulson, 1961) this

	Table 8.	Components	s of moleculd	ar inertial axes L	, M and N d	along dimension	nsless axes $\mathbf{a}_i = \mathbf{a}^i \mathbf{a}_i$
α-D	OX 1	2	3	β-DOX 1	2	3	Direction
L	0.2368	-0.1948	-0.8442	0.7142	0.0392	-0.5747	Almost C–C bond
М	0.8202	-0.4851	0.5255	0.4392	-0.8025	0.4692	In plane of molecule approximately 1 C-C
Ν	0.5208	0.8525	0.1061	0.5450	0.5953	0.6705	molecular plane

Table 9.	Contravarian	t components	T ^{ij} and cova	riant compone	ents ω_{ij} of molec	ular translation
and libra	tion tensors an	ıd their standa	rd deviation.	s with respect	to dimensionless	axes $\mathbf{a}_i = \mathbf{a}^i \mathbf{a}_i$

α-DOX	11	22	33	12	23	13
10 ⁴ T ^{ij} (Å2)	282 (15)	343 (21)	241 (11)	50 (13)	-5 (9)	69 (9)
10 ⁴ ω _{ij} (rad ²)	92 (10)	24 (4)	252 (29)	-18 (4)	57 (13)	-155 (23)
β-DOX 10 ⁴ T^{ij} (Å ²) 10 ⁴ ω_{ij} (rad ²)	291 (11) 167 (15)	315 (13) 6 (7)	384 (13) 147 (14)	19 (8) 44 (9)	48 (9) 	124 (8) - 151 (16)

Fig.1. Diagrammatic view of oxalic acid molecules in α -DOX and β -DOX.

implies that the *p*-character of the lone pairs and therefore the *s*-character of the oxygen bonding orbitals increases.

This increase in *s*-character of the bonding orbitals results in an opening up of the DOD angle and it should also lead to a slight strengthening of the OD bonds. The two OD bond lengths in the water molecule in β -DOX are observed to be slightly shorter than corresponding bond lengths in α -DOX, the averages being 0.954 and 0.946 Å respectively. The standard deviation of the difference is 0.002 Å. The difference is therefore just outside the experimental error.

Thermal parameters

Since it is to be expected that the carboxylic group would behave as a rigid body, a least-squares analysis was carried out to obtain the elements of the tensors **T** and $\boldsymbol{\omega}$ describing respectively the translational vibrations and librations of a rigid body using a program written by Hirshfeld & Rabinovich (1966). The coordinates of the center of libration were fixed at the center of symmetry. Results are given in Tables 8, 9, 10 and 11. The rigid-body motions are strikingly similar in the two polymorphs. In both modifications translational vibbrations are largest in the direction of the N axis which is perpendicular to the molecular plane, while librations are very large around L (approximately parallel to the C-C bond) and essentially zero around other axes of inertia. The librations around the principal axes parallel to L have r.m.s. amplitudes of 9.4 and 9.3° in α -DOX and β -DOX respectively. That hydrogen bonding does not prevent large librations of carboxylic groups has also been observed in structural studies of other carboxylic acids, such as fumaric acid (Brown, 1966) and terephthalic acid (Bailey & Brown, 1967). The observed atomic tensor elements U_{ij} agree well with corresponding values calculated with the rigidbody parameters for C(1), O(1) and O(2) (Table 10). However, in both structures $(U_{ij})_{observed}$ exceeds $(U_{ii})_{\text{calculated}}$ for the hydroxylic deuterium atom. The difference is especially pronounced in the direction of

the L axes (r.m.s. amplitudes 0.09 and 0.07 Å in α - and β -DOX respectively), indicating a vibration of the deuterium atom in the shallow potential well between oxygen atoms 1 and 3. A similar, but larger effect has been observed by Sequeira, Berkebile & Hamilton (1968) for the symmetrical hydrogen bond in potassium hydrogen diaspirinate where the corresponding amplitude for the hydrogen atom is 0.19 Å. The observed stretching frequency of the short O-H bond in oxalic acid dihydrate is 1900 cm⁻¹ (Lord & Merrifield, 1953). In the harmonic approximation this corresponds to *en* r.m.s. amplitude of 0.093 Å (see Fig. 3). The corresponding r.m.s. amplitude of the deuteron in the deuterated compound at the frequency of 1348 cm⁻¹ is 0.079 Å. Thus, the observed r.m.s. amplitudes of the deuterium atoms are in good agreement with the infrared data.

Table 10. Magnitudes $\times 10^4$, and directions of principal components of molecular translation an l libration tensors **T** and ω

Direction inertial ax	cosines of es L, M	principal tense and N defined	or axes along 1 in Table 7.
	L	М	N
375 Ų	0.1128	···0·0730	0.9909
254	0.3549	0.9345	0.0284
241	0.9281	-0.3485	-0.1313
270 rad ²	0.9975	0.0666	0.0220
23	0.0251	-0.0454	<i>−</i> 0·9987
-13	0.0655	- 0.9968	0.0469
432 Ų -	- 0.1848	0.2196	0.9579
296 -	- 0.0239	-0.9754	0.2190
239 -	-0.9825	-0.0176	-0.1855
265 rad ² -	- 0.9925	0.1168	-0.0365
23 -	- 0.0421	-0.0461	0.9981
-17 -	- 0.1149	-0.9921	-0.0206
	Direction inertial ax 375 Å ² 254 241 270 rad ² 23 - 13 432 Å ² - 296 - 239 - 265 rad ² - 23 - 17	Direction cosines of inertial axes L, M L $375 ^{A2} ^{O}1128$ $254 ^{O}3549$ $241 ^{O}9281$ $270 rad^2 ^{O}9975$ $23 ^{O}0251$ $-13 ^{O}0655$ $432 ^{A2} - 0.1848$ $296 ^{O}0239$ $239 ^{O}9825$ $265 rad^2 - 0.9925$ $23 ^{O}0421$ $-17 ^{O}0149$	Direction cosines of principal tensinertial axes L, M and N defined L M $375 ^{\text{A}2} 0.1128 \cdots 0.0730$ 254 0.3549 0.9345 241 0.9281 - 0.3485 $270 \text{ rad}^2 0.9975 0.0666$ 23 0.0251 - 0.0454 -13 0.0655 - 0.9968 $432 ^{\text{A}2} - 0.1848 0.2196$ 296 - 0.0239 - 0.9754 239 - 0.9825 - 0.0176 $265 \text{ rad}^2 - 0.9925 0.1168$ 23 - 0.0421 - 0.0461 -17 - 0.1149 - 0.9921

No rigid-body analysis was attempted for the water molecules as the number of observations (18) only slightly exceeds the number of rigid-body parameters to be determined (15 if the three librational axes are assumed to intersect).

Table 11. Observed and calculated thermal vibration tensor elements U_{ij} (Å²×10⁴) of atoms in the oxalic acid molecules referred to molecular axes of inertia L, M and N

		С	0	(1)	0	(2)	D	(1)
	Obs	Calc	Obs	Calc	Obs	Calc	Obs	Calc
α-DOX								
U_{11}	239	244	258	268	256	278	346	262
U_{22}^{-1}	260	266	294	298	295	288	414	387
$U_{33}^{}$	363	365	687	682	698	690	615	601
U_{12}	-2	1	38	35	-25	- 31	50	53
U_{13}	11	15	17	7	6	10	3	7
U_{23}	- 1	-10	-30	-21	-14	-5	-31	- 29
β-DOX								
U_{11}	242	245	259	278	260	269	311	263
U_{22}^{11}	305	315	339	338	343	347	458	434
$U_{33}^{$	407	409	677	674	764	760	694	690
U_{12}^{12}	-4	- 5	20	28	-40	- 39	-51	- 55
$U_{13}^{}$	- 38	-34	-33	-42	-63	- 48	-37	- 48
U_{23}^{-1}	30	30	17	20	57	47	51	57

Bond lengths in the oxalic acid molecules corrected for rigid-body motion are given in Table 12.

Table 12. Bond distances in the oxalic acid molecule corrected for thermal motion

Standard deviations contain an arbitrary contribution equaling $\frac{1}{3}$ of the thermal motion correction.

Bond	α-DOX	β-DOX
С — С	1.539 (2)	1.538 (2)
CO(1)	1.306 (5)	1.307 (5)
CO(2)	1.222 (5)	1.216 (5)
O(1) - D(1)	1.032(2)	1.021 (2)

Distribution of hydrogen isotopes

Before extinction was properly included in the refinement the results showed a small preference of the protons for the weaker hydrogen bond. This preference seems to have been an artifact introduced by the severe extinction; it disappeared in the final treatment (Table 13). It is however quite possible that the protons and deuterons distribute differently over the strong and weak hydrogen bonds, which have different frequencies and therefore different zero-point energies. An unequal distribution does in fact exist in a crystal containing 34% deuterium. This composition has been chosen so that, if random replacement took place, there would be practically no coherent scattering density at the hydrogen sites (Coppens, to be published).

Table 13. Scattering length of deuterium (f) as determined by least-squares refinement

	$(1f = 10^{-13} \text{ cm})$	
	α-DOX	β-DOX
D(1)	6.42 (5)	6.51 (4)
D(2)	6.35 (5)	6.53 (4)
D(3)	6.35 (6)	6·49 (4)

The deuterium scattering length

The scattering length of deuterium has recently been redetermined by Bartolini, Donaldson & Groves (1967) from a mirror-reflection experiment. The new value of 6.18 ± 0.04 f is considerably different from the older recommended value, which was 6.77 ± 0.08 f (BNL 325, Supplement 2, 1964). Because of this controversy, and also because the deuterium percentage in the crystal was not accurately known,* the deuterium scattering lengths were considered parameters in the least-squares refinement. It may be emphasized that the results are relative to the less controversial values of the scattering lengths of C and O (6.61 and 5.77 f respectively). The final values for the refined scattering lengths, given in Table 13, show that the deuterium scattering length cannot be lower than 6.51 ± 0.02 f, which is the average over the three sites in β -DOX. This assumes a 100% deuterium substitution, so the true value is probably higher.

The discrepancy between our value and the recent mirror experiment is in marked contrast to the agreement between the mirror and crystal-structure analysis results for the scattering length of ¹¹B: Craven & Sabine (1966) obtained 6.4 ± 0.1 f for the boron atoms in D₃¹¹BO₃, while Donaldson, Passell, Bartolini & Groves (1965) obtained 6.6 ± 0.3 f from the mirror experiments.

Fig. 2. Diagrammatic view of the water molecules in α -DOX and β -DOX. The numbers 42·3 and 1·4 indicate the angles between the O···D vector and the plane of the water molecule.

$$\langle u^2 \rangle = \frac{h}{4\pi^2 m_{\rm H,D} \nu} \{ \frac{1}{2} + [\exp(h\nu/kT) - 1]^{-1} \}.$$

^{*} Deuterium analysis of the sample crystals showed the deuterium content to be 95% or larger.

We would like to thank Dr B. M. Craven of the University of Pittsburgh for supplying the β -DOX crystal.

References

- BAILEY, M. & BROWN, C. J. (1967). Acta Cryst. 22, 387.
 BARTOLINI, W., DONALDSON, R. E. & GROVES, D. J. (1967).
 Univ. of California, Livermore, UCRL 70445.
- BEDNOWITZ, A. L., COPPENS, P. & HAMILTON, W. C. (1966). Abstracts of the Pittsburgh Diffraction Conference, November 1966.
- BROWN, C. J. (1966). Acta Cryst. 21, 1.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee.
- CHIDAMBARAM, R., SEQUEIRA, A. & SIKKA, S. K. (1964). J. Chem. Phys. 41, 3616.
- COPPENS, P. (1968). Acta Cryst. A 24, 253.
- COPPENS, P. & HAMILTON, W. C. (1969). Acta Cryst. In the press.
- COPPENS, P., SABINE, T. M., DELAPLANE, R. G. & IBERS, J. A. (1969). Acta Cryst. B25, 2451.
- COULSON, C. A. (1961). Valence, 2nd. ed. p.203. Oxford Univ. Press.

CRAVEN, B. M. & SABINE, T. M. (1966). Acta Cryst. 20, 214.

DELAPLANE, R. G. & IBERS, J. A. (1969). Acta Cryst. B25,2423.

- DONALDSON, R. E., PASSELL, L., BARTOLINI, W. & GROVES, D. J. (1965). *Phys. Rev.* 138, B1116.
- FUKUSHIMA, F., IWASAKI, H. & SAITO, Y. (1964). Acta Cryst. 17, 1472.
- FUKUSHIMA, F., IWASAKI, H., SAITO, Y., SATO, S. & HO-SHINO, S. (1965). Bull. Chem. Soc. Japan, 38, 151.
- HAMILTON, W. C. (1962). Ann. Rev. Phys. Chem. 13, 19.
- HAMILTON, W. C. (1965). Acta Cryst. 18, 502.
- HIRSHFELD, F. L. & RABINOVICH, D. (1966). Acta Cryst. 20, 146.
- International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.
- IWASAKI, F. F., IWASAKI, H. & SAITO, Y. (1967). Acta Cryst. 23, 64.
- IWASAKI, F. F. & SAITO, Y. (1967). Acta Cryst. 23, 56.
- LARSON, A. C. (1967). Acta Cryst. 23, 664.
- LORD, R. C. & MERRIFIELD, R. E. (1953). J. Chem. Phys. 21, 166.
- SABINE, T. M., COX, G. W. & CRAVEN, B. M. (1969). Acta Cryst. B25, 2437.
- SEOUEIRA, A., BERKEBILE, C. A. & HAMILTON, W. C. (1968). J. Mol. Struct. 1, 283.
- ZACHARIASEN, W. H. (1967). Acta Cryst. 23, 558.

Acta Cryst. (1969). B25, 2451

An Experimental Determination of the Asphericity of the Atomic Charge Distribution in Oxalic Acid Dihydrate*

BY P. COPPENS

Chemistry Department,[†] State University of New York at Buffalo, Buffalo, New York 14214, U.S.A. and Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973, U.S.A.

T. M. SABINE[‡]

Physics Department, Brookhaven National Laboratory, Upton, New York 11973, U.S.A.

AND ROBERT G. DELAPLANE AND JAMES A. IBERS

Chemistry Department and Materials Research Center, Northwestern University, Evanston, Illinois 60201, U.S.A.

(Received 24 January 1969)

It is shown that a combination of X-ray and neutron diffraction methods will give meaningful information about the distribution of bonding electrons in a typical simple molecular crystal (oxalic acid dihydrate). Difference maps combining X-ray and neutron diffraction information show bond and lonepair densities in analogy with an earlier study of *sym*-triazine. Discrepancies between X-ray and neutron positional and thermal parameters are discussed and compared with similar differences in some other compounds. It is concluded that molecular environment should be reflected in X-ray scattering factors if small systematic errors in some of the positional parameters and fairly large systematic errors in the temperature parameters are to be eliminated.

Introduction

McWeeny (1952, 1953, 1954) in a series of articles emphasized that X-ray diffraction data contain informa-

tion about the asphericity of the atomic charge distribution. Model calculations by Dawson (1964) on a hypothetical structure consisting of two non-spherically symmetric nitrogen atoms in the unit cell confirmed that the effect may be appreciable for first-row atoms. Dawson found, for example, that the R factor between the structure factors calculated with spherical nitrogen atoms and those calculated with the proper form factors for the prepared state may be as high as 8%. He also

^{*} Research performed in part under the auspices of the U.S. Atomic Energy Commission.

[†] Permanent address.

 $[\]ddagger$ Visiting Scientist from Australian Atomic Energy Commission.